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F L O W S  W I T H  B O U N D A R Y  L A Y E R S  IN U N B O U N D E D  R E G I O N S  

V .  V .  K u z n e t s o v  UDC 532.526/532.61 

Flows with Marangoni boundary layers having differently directed velocities of the external flow 
and the tangent stress at the free boundary are considered. The conditions of occurrence of 
counterflows are studied. An analog of the system of Prandtl equations near the contact point 
of three phases is obtained. Examples of the solutions are given. 

I n t r o d u c t i o n .  It is known that one can separate Prandtl boundary layers in the vicinity of the 
rigid walls and Marangoni layers near the free boundaries when a sufficiently intense motion of the fluid is 
described. The problem of the Marangoni boundary layer was formulated by Napolitano [1] and was studied 
from various viewpoints [2-4], mainly in connection with applications to the problems of space materials 
science. In particular, Napolitano and Golia [2] studied invariant solutions of this problem. However, only the 
case was considered where the tangent stress at a free surface, which induces the boundary layer, is directed 
in the direction of the fluid flow. Since this stress frequently causes the motion of the fluid, this case can be 
regarded as a basic case. Nevertheless, the tangent stress can be opposite in direction to the main flow. After 
that, a counterflow can occur in the motion region. 

In the present study, we investigate the conditions of occurrence of a counterflow in Marangoni 
boundary layers when the tangent stresses are oppositely directed to the main fluid flow and in the layers 
conjugate to the main layer whose external flow is a quiescent state. The solutions of the Cauchy problem for 
the Blasius equation are refined. An approximate formula to determine the distance from the coordinate origin 
to the point of onset of a counterflow for specified constant and differently directed velocities of the main 
layer and the tangent stress at the free boundary is derived. An analog of the system of Prandtl  equations for 
the description of flows with large Reynolds numbers near the three-phase contact point is obtained. For this 
system, the problem is formulated, and examples of the solutions are given. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  For a Marangoni flat stationary boundary layer, the basic problem 
has the following form: in the domain x > 0, y > 0, it is necessary to determine the velocity components u 
and v that satisfy the system 

Ou Ou 1 dp 02u Ou Ov 
= + u 0 2' ~ + = 0 (1.1) y Ox 

with the boundary conditions 

= u0(y ) ,  = S (x ) ,  " ,_-0 = 0, u ( x , y )  v ( x )  as (1.2) 

In (1.1) and (1.2), the density is ~ = const, the functions u0, f ,  and U are the parameters of the problem, 
and the pressure p(x) is connected with the velocity U(x) of the external flows by the relation (the Bernoulli 
integral) 2p(x)/g + U2(x) = const; the function f(x) has the meaning of the tangent stress along the free 
surface, which can be caused, in particular, by the thermocapillary effect. Hereinafter, we consider that 
U(x) >~ O. The tangent stress on the free surface is directed streamwise if f (x)  <~ 0 and counterstream if 
f (x)  > 0. Generally speaking, in this case, one can expect the presence of a counterflow zone. The questions 
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arise concerning the relation between the parameters of the problem at which a counterflow can occur, the 
part of the boundary layer involved into this counterflow, and the thickness of the entire Maxangoni boundary 
layer. 

In the theory of Prandt l  boundary layer, to estimate the thickness of the boundary layer, the so-called 
displacement thickness [5] is generally used. It is not applicable to Marangoni boundary layers, because, in 
this case, U = 0 for some values of x. We shall introduce the analog of this quantity, namely, the perturbation 
thickness ~*, by means of the equality 

[u(x, - U(x) ]~*  = ] [ u ( x ,  y) - U(x)]  dy. (1.3) 0) 
0 

The introduction of the new term is justified not only owing to a certain difference in the definition but also 
in the physical meaning: the Maxangoni boundary layer is the velocity perturbat ion near the free boundary; 
at the same time, it is difficult to imagine that,  just as a solid, the free boundary "displaces" the streamlines. 

2. I n t e r a c t i o n  b e t w e e n  t h e  U n i f o r m  Flow and  t he  Surface  S t r e s s .  Let U =cons t  and f ( x )  = 
F /v ,~ .  We search for a solution of problem (1.1), (1.2) in the form u = Or and v = - O r  The stream 
function is r = (Fu2)l /3v/~h( t ) ,  where t = ( F / u ) l / 3 y / v ~ .  In this case, the function h satisfies the Blasius 
equation [5] 

2h m + hh" = 0 (2.1) 

with the boundary conditions 

h(0) = 0 ,  
U 

h"(O) = 1, h'--* (F2u),/3 as t--~ c~. (2.2) 

The calculations show that,  if U = U, ,~ 2.085(F2u) I/3, there is a solution h,  of problem (2.1), (2.2) such 
that h',(0) = 0, i.e., the free surface is fixed, and this solution differs from the solution of the classica.1 Blasius 
problem [5] only by the continuation of the variables. 

For each U > U,, one can construct two solutions of problem (2.1), (2.2); h'(t) > 0 in one of them 
for all t, and the other solution has a domain of change of the argument where h~(t) < 0. The examples of 
calculation of problem (2.1), (2.2) axe given in Fig. 1 in the form of graphs of the function h'(t) for certain 
values of U. Curve 2 corresponds to U = U,, and curves 1 and 3 to U = 2U,. Since the equilibrium at the 
free boundary is reached for U = U, for a given f ,  one can assume that the longitudinal velocity is positive 
everywhere for U > U,; therefore, we consider that the flows which correspond to curve 3 cannot occur. 

To find out what will happen for U < U,, it is necessary to refine the properties of the solutions of the 
Cauchy problem for the Blasius equation (2.1) with the initial data 

h(O) = O, h'(O) = fl, h"(O) = % (2.3) 

It is known [6, Chapter  14] that problem (2.1), (2.3) for/3/> 0 is uniquely solved; note that h" > 0 
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(if 3, > 0) and there exists a limit h'(t)  as t ~ ~ ,  which is denoted in terms of U(8,3,). Here U(t3,3,) is a 
continuous funct ion of argument  3', and, if 3,1 > 3'2, we have U(/3, 3,1) > U(8, 3'2)- We shall show that problem 
(2.1), (2.3) can be solved for negative/3.  

L e m m a  1. Problem.(2.1),  (2.3) can be solved "as a w h o l e ' f o r 8  < 0 and3, > 0 and there ezist t* > 0 
and t  ~ E (0, t*) such tha th ( t )  < O f o r t  e (0,t*) a n d h ( t )  > O f o r t  > t*, h'(t) < O f o r t  E (0,t~ andh ' ( t )  > 0 
for  t > t ~ 

P r o o f .  The  solution of the Cauchy problem (2.1), (2.3) can be considered as a solution of the system 

h' , l - h a / 2  ---- w,  w = a, a = 

which passes th rough the point t = O, h = O, w =/3 ,  and a = 3'- Since the right-hand sides of the equations 
are continuous Lipshits functions of their  arguments,  the problem can be solved locally and this solution can 
be continued to the  domain t > 0 or over the  entire numerical axis, or until the right-hand sides are restricted. 

It follows from Eq (2.1) [this equat ion is linear relative to h"(t)] that  

t 

1 h ( r ) d r } .  h"(t) = 3,exp { -  f 
0 

In addition, 
t 

h'(t)  =/3  + f h"(r)dT.  
o 

Then h' and h" can become infinite for a certain value of the argument t = t ~ only together with h(t~). 
Therefore, the  unlimitedness of the r ight-hand sides of the system means the presence of a vertical asymptote 
in the graph of the  function h(t).  However, t o E (0, t*) and h'(t  ~ -= 0 exist, and since the graph h(t) is convex 
downward, h , +cxD, there is a value of t = t* such that  h(t*) = 0 and h(t) is smooth. In addition, if one 

t--~ t: 
denotes /3* -=-- h'(t*) and V* -- h"(t*),  this solution is invariant under the shift of the reference point of the 
argument,  since the  argument does not eater  explicitly into Eq. (2.1). As a result, the solution will be also the 
solution of the  Cauchy problem (2.1), (2.3), which corresponds to the/3 =/3* > 0 and 7 = 7" > 0; therefore, 
it can be cont inued infinitely to the  right. 

This contradict ion shows that  the solution h(t) can be continued to the entire numerical semi-axis. The 
existence of the  finite limit U(/3, 3') of the function h'(t) as t ~ cr can be proved as done in [6] for positive/3. 
It is clear tha t ,  if U(8,3,) > 0, we again obtain the existence of t* and t o such that  h(t*) = 0 and h'(t ~ = 0. 
Since h'(t) increases monotonically, the conditions that  the solution and its derivative are sign-determined, 
which are required by Lemma 1, are satisfied, and Lemma 1 can be considered proved in this case. 

If U(/3, 3') ~< 0, we have h"'(t)  = - 0 . h h ( t ) h " ( t )  > 0 everywhere, because the maxima h(t) < 0 V t > 0 
are impossible. Since h"(0) = 3' > 0, we have h"(t)  > 3' and U(8,3,) = lim h'(t) cannot exist. Therefore, 

t~OO 
U(8, 3') is positive. Lemma 1 is proved. 

We now establish the properties of the monotonicity of U(/3, 3') relative to the first argument. 
L e m m a  2. / f  81 >/32/> 0 or/31 </32 ~< 0, then we have U(81,3')/> U(/32,3'). 
P r o o f .  We shall pass to the  new independent  variable w = h'(t) in problem (2.1), (2.3). We obtain 

w w dh dh dw _ h (w)h"( t ) ,  h"( t )  = ~ ,  ]~(w) = . (2.4) 
w -  dt - dw dt h"(t)  

Hereinafter, the  dot and the prime denote differentiation with respect to w and t, respectively. For the function 
h(w), we obta in  the Canchy problem 

= h + 2hh 2, (2.5) w h  

h(/3) = 0, h(/3) =/3/3'- (2.6) 
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By virtue of the properties of the function h(t), the map w: [0, c~) ) [/7, U(/~, 3')) is homeomorphism; 
therefore, there is a one-to-one correspondence between the solutions of problems (2.1), (2.3) and (2.5), (2.6). 
As a result, it follows from the properties of the function h(t) that  h(w) < 0 for w < 0 and ]~(w) > 0 for 
w > 0, and the graph h(w) is convex downward and intersects the ordinate at a right angle. The fact that 
h'(t) ~ U(~, ~/) as t --* oo means that h(w) has a vertical asymptote as w --* V(fl ,  .1). 

Let/71 > /72 >/ 0. Then, if hi(t) ,  h2(t) and hi(w),  ha(w) are the corresponding solutions of problems 
(2.1), (2.3) and (2.5), (2.6), we have h2(/3a) > hl(]~l) = 0, because ]~2(w) > 0. In addition, according 

= ~llha(t031)), where t(w) denotes the value of t that corresponds to the given to (2.4), we have h2(~1) " 
w = h'2(t ). However, h~'(t) = -0.hha(t)h~(t)  < 0 and, therefore, we have h~(t) < 3'- As a result, we have 
]~2(~1) >/~1/'~ -- ]~l(fll). Equation (2.5) is equivalent to the system 

= W, W ._ W + hW2/2  (2.7) 
w 

It is obvious that  the right sides of system (2.7) are increasing functions of the arguments h and W for h > 0 
and w > 0. As is shown above, ha(ill) > hl(f~l) and Wa(Zl) > Wl(fll). Therefore, we have h2(w) > hi(w) 
everywhere for w >//71; moreover, the difference ha - hi increases [6, Chap. 3]. This means that the graph of 
the function hi (w) lies below that of the function ha(w) and, consequently, has a vertical asymptote farther 
to the left of the graph h2, i.e., U(fll,')') ~ U(fl2,30, as was to be shown. 

If f~I < fl2 ~< 0, according to the properties of the solution h(w), each solution of problem (2.5), (2.6) 
is also the solution of the Cauchy problem for Eq. (2.5) with the initial data 

h(O) = h ~ < 0, h(0)  = 0. (2.8) 

Therefore, hi (w)  and h2(w) are also the solutions of problem (2.5), (2.8) with certain values h ~ and h ~ of 
the parameter h ~ We shall show that h ~ < h ~ We have ]~l(fla) = ~ 2 1 h ~ ( t ( ~ 2 ) )  > t321"1 = ]za(fl2), because 
h~'(0) = % and h~'(t) = -0.hhl( t )h~(t)  > 0 for t, where hi(t)  < 0. Since hi and ha are the solutions of Eq. 
(2.5), their difference H = ha - hi satisfies the equation 

wf-xr /-:/[1-F 2hl(]~i-F ha)] = 1"2 - - ~ h l g  , (2.9) 

which is linear relative to/-/ .  Therefore, for w E (/3a, 0), we obtain 

�9 

#2 ~2 
If there was a point fl. E 032, 0) of intersection of the graphs of hi and h2, there would be H > 0 for w < t3. 
and g ~< 0 for w > fl.. Obviously, in this case,/:/(/7.) ~< 0 and the equality 

J2 ~. 

on the right side of which the first term is negative, the second is p.ositive .(their sum is not greater than zero), 
and the third is negative, would hold. Therefore, there would be H(0) = ha(0) -)~1(0) < 0, which contradicts 
(28). 

As a result, we obtain h ~ <~ h ~ If h ~ < h ~ we have 

s:s(w) = i dr > 0 
0 

for w > 0, i.e., the difference ha - h i  does not decrease, and the graph hi(w) lies below than the graph ha(w), 
and, hence, U(~I, ~/) >/V(fla, 7). If h ~ = h ~ we have H(0) = / : / (0)  = 0. It follows from (2.4) that h(w) = O(w) 
as w ---* 0; therefore, considering (2.9) for w / 2  0, we obtain H(0) > 0 with allowance for the fact that there 
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should b e / : / <  0 as w < 0. Consequently, similarly to the above case, the difference h2 - hi does not decrease 
for positive w and the statement of Lemma 2 holds. Lemma 2 is proved. 

C o r o l l a r y .  I f  U < U,, smooth bounded solutions of problem (2.1), (2.2) do not exist. 
P r o o f .  We assume that there is a solution h(t) of problem (2.1), (2.2). Three variants are possible: 

h'(0) > 0, h'(0) = 0, and h'(0) < 0. According to Lemma 2, U/>  U, in all the cases, which contradicts the 
conditions. This contradiction proves the corollary. 

R e m a r k .  It follows from the aforesaid that, for U > U,, the two classes of solutions of problem (2.1), 
(2.2) (curves 1 and 3 in Fig. 1) are not different: in essence, they are the same solutions of Eq. (2.1) but 
shifted along the  coordinate t. 

We calculate the perturbation thickness for the Marangoni layer. We obtain 

(uF)I/3 v/"~ O 0  

6* = f (h' - U/(F2u) 1/3) dt. 
hi(0 i : U / ~ ) 1 / 3  o 

3. I n t e r a c t i o n  b e t w e e n  t h e  S u r f a c e  S t r e s s  a n d  t h e  P r e s s u r e  G r a d i e n t .  Let the  pressure fall 

off downstream with a constant gradient P,  i.e., p = - P x  and U(x) = ~ / # .  Then, for f ( x )  = Fx  1/4, one 
can search for the  stream function in the form 

( F u )  1/4 ' y ( F ~ 1/3 
r = 7 x3/'h(t)' t = 

To determine h(t),  we obtain the boundary-value problem 

\ F 4 ]  + (3.1) 

h(0) = 0, h"(O) = 1, h' ---+ v / ~ ( g u / F 4 )  1/6 as t ---+ cx~. (3.2) 

The calculations show that there is a critical value of P. ~ 0.465(Ou)-1/3F4/3 such that ,  if P < P., 
problem (3.1), (3.2) has no solution. However, in contrast to the results given in Sec. 2, the solution h. of this 
problem, which corresponds to P = P.,  does not correspond to the case wher@ the longitudinal velocity on 
the free surface vanishes [h'(0) = 0]. The value of P = Po ~ 0.576(~u)-113F4/3 corresponds to this case; note 
that, if P > P0, we have h'(t) > 0 for all t >/0, and, if P.  ~< P < P0, we have h'(t) < 0 on a certain interval 
(0, 6) of t variation and h'(t) > 0 for t > 6. This means that there is a counterflow zone in which the liquid 
flows toward the  main stream near the free surface. 

Examples of the calculation of problem (3.1), (3.2) are given in Fig. 2 where the graphs of the function 
h'(t) for certain values of the parameter P are depicted. Curve 3 corresponds to P = P, ,  curve 2 to P = P0, 
and curve to P = 3P0/2. 

Figure 3 shows the thickness 5 of the counterflow layer measured in fractions of the  perturbation 
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thickness 5* versus P for P G [P., P0]. One can see that the counterflow can involve a significant part  of the 
boundary layer. In this case, we have 

5* = (~v~lF)l13x114 oo 

If the pressure gradient is not constant and is a certain power of the coordinate z, one can construct 
examples of the solutions with counterflows. These cases are omitted in this paper. 

4. O n s e t  o f  t h e  C o u n t e r f l o w .  It follows from the results of Sec. 2 that,  if U = const, it is necessary 
that  the tangent stress that  initiates the boundary  layer decrease inversely to the square root of the distance 
downstream to reach the equilibrium situation when u = 0 for y = 0. Clearly, if f ( x )  = F = const, a 
counterflow arises. Let us establish how far from the coordinate origin this will occur if the initial velocity 
profile uo(y)  differs little from the constant U. 

In this case, it is more convenient to solve problem (1.1)-(1.3) in dimensionless variables. Using U as 
the scale of velocity and l .  = v / U  as the scale of length during nondimensionalization and the same notation, 
we obtain the system 

Ou Ou c3~u c3u c% 
+ . 0 y  0y2' 0x + = 0 (4.1) 

with the boundary conditions 

ul==o = uoIy), I ~,=o = a ,  v y=o = O, u ( x ,  y) --o 1 as y ---, co. (4.2) 

Here a = F / ( ~ U 2 ) .  We use the function uo (y )  = 1 - e - k ~  as the velocity profile. If k is large, u0 differs 

slightly from unity and conditions (4.2) are consistent at the point (0, 0). 
Problem (4.1), (4.2) was solved numerically by the grid method. It is noteworthy that the calculations 

in the Marangoni boundary  layer for u > 0 are much simpler compared to those in the Prandtl  layer, at least 
before the onset of a counterflow. This is due to the fact that here there are no difficulties associated with 
boundary-layer calculations, which were mentioned, e.g., in [7]. At the same time, the calculation cannot be 
continued indefinitely after the occurrence of a counterflow, because a situation similar to the "return time" 
for the heat-conduction equation arises. Since our aim is to find the distance from the coordinate origin to 
the counterflow zone, the lat ter  circumstance is not important. 

In the calculations, we employed the scheme 

u j+l  j . / + l  _ v j+l  
i - - ~ i  + 'V/+l i - -  O, 

r h 

j + l  . J + l  ~ , j + l _ 2 ~  . J + l  �9 ~ i"J+l - -  uiJ j t~ /+ l  - -  t~i _ '~ i -1  t~i + t~ /+ l  
uf  

r + vi h h 2 ' 

where j and r are the node number and the step along the axis x, and i and h are the node number  and the 
step along the axis y (i --- 2 , . . . ,  n - 1 and j = 2 , . . . ,  m) with the boundary conditions u~ - u~ = a h ,  u~ = 1, 

1 = uo( ih) ,  and v~ = 0. u i 

To find the values of vJ, we exclude u ,  from system (4.1) and obtain the relation - u v y  + vuy  = uyy, 

which should hold up to the line x = 0. With  allowance for v~ = 0, we find v I from its difference analog 

1 1 1 -- 2u~ + 1 . 1  ~31i+1 - -  v l  l U i + l  - -  u i  ~-  ui-1 Ui+l 
ui h + vi h h 2 

A series of calculations, in which a was varied from 0 to 1, was performed. Figure 4 shows the distance 
l / l ,  downstream before the  occurrence of a counterflow from the value of a on a logarithmic scale. One can 
see that the graph is almost a straight line and, hence, one can assume that l n ( I / l . )  ,~ -1 .25  - 1.98 In a; we 
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obtain the approximate  formula 

v 0.285 v 0.285 
U •1.98 U a 2 

5. B o u n d a r y  Layers  Conjugate t o  t h e  M a i n  L a y e r  a t  R e s t .  Let U -- 0 and f(:c) = ax v. One 
can search for the  stream function in the  form 

(a_~) a 1,3 1Dx(2+7)/3 h( t ); (~-~ r  y) = t = ) yz  (~-1)/3. 

For h(t), the  boundary-value problem 

27 + 1 hi 2 7 + 2hh,  h ' ,  (5.1) 
3 3 

h(0) = 0, h"(0) = 1, h' --+ 0 as t --+ eo (5.2) 

arises. If 7 = - 2 ,  this problem is solved explicitly and the corresponding solution of problem (2.1)-(2.3) has 
the form 

u = x [(al(  ,2) 13ylx + vl-fg]3, = + vi- ]3" 

Here the per turba t ion  thickness is 77 = 3Vl~x(gv2/a)  113. 
Section 3 dealt with the mot ions  with counterflows which are due to the competition between two 

physical factors: the pressure gradient  and the tangent stress on a free surface. For dynamic reasons, if the 
boundary layer is conjugate to the  main  layer at rest, counterflows can occur. For example, let 7 = -1 .  Then, 
Eq. (5.1) can be reduced to a Riccati  equation of the form h' = - h 2 / 6  - t + h'(O) by double integration with 
allowance for the  boundary values (5.2). If h'(0) < 0, this equation has a solution h(t) such that h'(t) < 0 for 
t E (0, 77) and h'(t) > 0 for t > 77. In addit ion,  h = O(1/v/7) as t ---> oo. 

The  example  of this solution is shown in Fig. 5, where one can see the graph of the function h'(t). It is 
noteworthy tha t  the perturbat ion thickness cannot be calculated in this case: the integral in the right-hand 
term of the definition (1.3) is divergent.  

6. B o u n d a r y  Layer  N e a r  t h e  T h r e e - P h a s e  C o n t a c t  P o i n t .  The motion region can have rigid and 
free boundaries intersecting at a certain angle. If the fluid mot ion is quite intense, one can separate boundary 
layers in the vicinity of the rigid and free boundaries. The  problem of the possibility of passing a boundary 
layer through the  contact point  has not yet been investigated. Mathematically, this problem is reduced to the 
problem of separat ion of an asympto t ic  (for large Reynolds numbers)  form of the Navier-Stokes equations 
which is applicable to describe the  flow near the contact point. 

Let the  motion occur in the  region occupying the quadrant  x > 0, y > 0; the line {z = 0} is the rigid 
wall, and the  line {y = 0} is the  free boundary. We assume that  the kinematic and dynamic conditions at 
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these boundaries have the form 

0. v,=0 = = #u-- = f(z) ,  = 0. (6.1) 

Let ( and r /be  an arbitrary system of curvilinear orthogonal coordinates, and v( and v e be the velocity-vector 
components in this system. Then the Navier-Stokes equations have the  form [5] 

v e Ov( v, Ov, ve I' OH( OH('\ 1 0 p  [H~ o2v( 1 0 v (  
Helle k Or/ v,--g-() ~He 0r + ~ 0~ + H~ Or/~ 

1 O(H,/H~) Ov e 1 O(H(/He) Ov( 2 OH( 0% 2 OH, 0% 
+ He----t~-~ O~ O~ + H(H-----;, Or/ Or/+ H~H----~ o--T o~ 

+~ 
H(H~ O~ Or/ 

OHeH 1 0 ( 1 OH() 1 0 ( 1 0 H ( ~ v  1 0 ( 1 0 H e )  ] . (6 .2)  
-~ j v~ + K N ~ I e  or/ ~( + ~ -~ ~[I~e N ~ e ~Ie or/ ~31, o~ ve , 

,,( f OH( OH,~ 
H( H, tVe-N-, - "e-g( ) 

v e Ov__ 2 + % 0% 
H e O~ H e Or} 

I O(He/H() + - -  
g(ge O~ 

1 0 (  1 OHeH 1 

O~ e 

o~ 
i O(HJHe) 0% 

_ _  d u  _ _  

g ( ge Or/ Or/ 

1 Op [ 1 02% 1 0% 
~H, Or/+ ~ Lff~ o~ + g~ Or/~ 

2 OH( 0% 2 OH e Ov~ 
H~H, Or/ Or H(Hg Or Or/ 

0 I OH(~v 1 0 1 OH(H 1 0 I OH e'~ ] 

0% OH e OH e 
H e + H~--O--~ + v(--'~-- + ve--~- ~ = 0 

where H e and H. are the Lam6 coefficients of the corresponding coordinates. 

;(6.3) 

(6.4) 

We assume tha t  ~ = (x 2 - y2)/2 and r 1 = xy. Then we have d~ = zdx - ydy and dr/ = ydx + xdy; 
therefore, dx 2 + dy 2 = (d~ 2 + dr/2)/(x 2 + y2) or H e = H e = (x 2 + y2)-1/2 __ (~2 + r/2)-1/4/v~.  

We consider the  orders of magni tudes  in the given problem. Let the  stress at the free surface initiate the 
fluid motion with large Reynolds numbers .  Let the order of velocity be denoted by V, l be the characteristic 
dimension of the region, 6 be the thickness of the layer of large velocity gradients at the boundaries of the 
region of mot ion  at a distance from t h e m  (the boundary layer), and F be the order of f (z) .  Similarly to [3], 
it is easy to es t imate  the  values of V, Re, and 6. From the equations of motion and the boundary conditions, 
we obtain the ordinal  relations V2/l = uV/62 and ~uV/6 = F;  as a result, we have 

1/3 F 6  Re = 

6 = , y = 0~ '  \0--5~. 4]  " 

Therefore, if Re is large, we have 6 = I/vIR'e << l, and 6/l << 1. 
We separate  the asymptot ic  form of Eqs. (6.2)-(6.4) under the  assumption that  v( ,.. V, v e ,.. 6V/l, 

~ 12, and 7/ .-. 61. The above example,  which is important  for applications, shows that  these orders of 
magnitude are qui te  real. Here H e .., H e ... 1/l. Keeping the higher-order terms relative to the 6/I, we obtain 
an analog of the  sys tem of Prandt l  equations: 

Ov e Ov( = 10p  
v(-g( + v, or~ --~ o7 + 

Or( Ov e Op = O, + - -  
0,7 O~ Or~ 

As Re ~ ec, the  boundary  conditions (6.1) take the form 

. ~ / ~  ~ (6.5) 
07/2 ' 

ve = O. (6.6) 
2~ 

= f(~) '  ve e=O,(>o = O. (6.7) re, Ve]e=O,r o = 0, 
ov Ov~ 

2 ~ [  Or/ ~=o,e>o 
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By virtue of the  first equation in (6.6), one can assume that  p = p(~) and introduce U(~), the  velocity of the 
external (potential)  motion at the frontiers of the region. Here the case ~ < 0 corresponds to the boundary 
{x = 0}, and ~ > 0 to the boundary {y = 0}. 

Assuming that  f ~< 0, we obtain tha t  problem (6.5)-(6.7) corresponds to the  case of the transition 
of the Prandt l  boundary layer to the  Marangoni layer. Obviously, alongside with condit ions (6.7), we can 
consider the conditions 

~v Ov~ ~=0,~<0 = f (~) '  v,  ,1=0,~<0 = 0, v~,v, ~=0,~>0 = 0, (6.7') 
2 ~ / ~  07/ 

which correspond to the case where the Marangoni becomes a Prandtl  layer. Here the fluid runs into a rigid 
wall. 

It is noteworthy that ,  for ~ = 0, there  should be U = 0. In addition, the pressure gradient Op/O~ can 
have a discontinuity of the first kind for ~ = 0. In this case, the solution of problem (6.5)-(6.7) is understood 
in the sense of [8], where the PrandtI  boundary  layer with a discontinuous pressure gradient  is considered. 

The  second equation in (6.6) allows one to introduce a stream function r such that  v~ = V/~[Or 

and v, = - ~k /~0r  Passing to the  Mises variables ~, r  and w = v~, we obtain the equat ion 

Ow 2 dp t,v/'2"w 02w 
O~ g d~ ~ 0r 2, 

which is reduced,  by the replacement s = / ~ 2 / ] ~ 1  d~, to the classical Mises equation of boundary-layer theory 

~o 

Ow 2 dp + ~ O~w 
Os - O ds 

Here the boundary  conditions (6.7) take the  form 

Ow 
w ~=0,s<so = 0, ~v--]0~b r = f (s) .  

The conditions under  which the Marangoni layer becomes a Prandtl  layer can be wri t ten similarly. 
We shall consider some examples. If one sets f(~) = - F ~  3~+1 and g2(~) = 2P[~[43+3/[g(4fl + 3)] in 

problem (6.5)-(6.7), its solution can be searched for in the form 

[5_2~)/2Pt"2\1/4[~[3+ 1 / p  \1]4 
4, = h( t ) ,  t =  [ 2 - [ J )  (6.8) 

Since there should be U(~) = 0, we have/3 > - 3 / 4 .  Substituting this representation into problem (6.5)-(6.7), 
we obtain tha t  its solution has the form (6.8) for ~ < 0, where h(t) is the solution of the problem 

h"' = 1 4/3 + 3h, 2 + (/3 + 1)hh"; (6.9) 
2 

~/ ~ cr (6.10) 
2 

h(O) = h'(O) = O, h'(t) - ,  4/3-+ 3 for t 

For ~ = 0, we have v~ = v~ = 0, and, for ~ > 0, the solution again has the form (6.8), where h(t) is the 
solution of the  problem 

= - 1  + ~ - ~ h  '2 - (/3 + 1)hh"; (6.11) h'" 

h(O) = O, h"(O) = - # ,  h'(t) --* "4if-+ g as t --* r (6.12) 
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If/3 > --1/2, the resulting solution of problem (6.5)-(6.7) is smooth everywhere. If/3 = -1 /2 ,  the 
pressure gradient dp/d~ for ~ = 0 has a discontinuity of the first kind and the solution should be understood 
in the sense of [8]. In this case, the solution is not smooth only in the coordinates ~ and r /and smooth in the 
Cartesian coordinates. If - 4 / 3  < 13 < - 1 / 2  , for ~ = 0, the pressure gradient becomes infinite. Special studies 
are needed to understand whether these solutions have meaning. If the thermocapillary effect is the source of 
motion (as during crucibleless zone melting at zero gravity), one can expect that the case/3 = - 1 / 2  is most 
frequent. Problems (6.9), (6.10) and (6.11), (6.12) were solved numerically for/3 = - 1 / 2  and/3 > -1 /2 .  The 
behavior of the velocity distribution h(t) has a form conventional for boundary layers [2, 5]. The examples 
show that the boundary problem (6.5)-(6.7) can be used for analysis of the flows near the three-phase contact 
point. 

7. C o n c l u s i o n s .  In studying the occurrence of a counterflow, it seems natural to find a relation 
between the parameters of a problem in which the free boundary is fixed. Then, changing this relation, one 
can expect the presence of counterflows and standard solutions with a unidirectional longitudinal velocity. 

In the present study, the cases where the main flow has a constant velocity or is characterized by 
a constant pressure gradient (the case of a varied pressure gradient differs little from the latter case) were 
considered in detail. 

In the case U = const, the equilibrium on the free surface was reached for the tangent stress f(x) = 
F / v ~  if U = U. (the constant U. was determined in See. 1). For each U > U., two solutions, one of which 
cannot take place physically and the other has no counterflow, were constructed. Additional studies of the 
Cauchy problem for the Blasius equation (they are of independent value) showed that, for U < U., there are 
no self-similar solutions of the problem. 

Another situation arose when the longitudinal pressure gradient in the main flow was equal to the 
constant - P .  A value of P = P0 is also calculated at which equilibrium was observed at the free boundary, 
but solutions having physical meaning exist for both P > P0 and P < P0- In the latter case, the flow region 
contained a counterflow zone involving a larger part of the boundary layer the smaller the value of P. 

The case of the constant velocity of the external flow and the tangent stress is characterized by the 
fact that the return-flow region always occurs downstream with distance from the coordinate origin, because 
the equilibrium of the free boundary requires a decrease in the stress downstream in inverse proportion to the 
square root of the distance. An approximate formula to calculate the distance to the counterflow zone was 
derived. 

The, motion region can have rigid walls intersecting at a certain angle and free boundaries. In solving 
the problem by the method" of selecting the boundary layers, the question arises whether it is possible to 
pass the boundary layer through the contact point. The asymptotic (for large Reynolds numbers) form of 
the Navier-Stokes equations which is applicable to the description of flows near the contact point was found. 
Examples of the calculation were given. 

The author thanks G. B. Volkova for her assistance in carrying out the calculations. 
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 97-01- 

00818). 
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